Semi-empirical formulation of multiple scattering for the Gaussian beam model of heavy charged particles stopping in tissue-like matter.
نویسنده
چکیده
Dose calculation for radiotherapy with protons and heavier ions deals with a large volume of path integrals involving a scattering power of body tissue. This work provides a simple model for such demanding applications. There is an approximate linearity between RMS end-point displacement and range of incident particles in water, empirically found in measurements and detailed calculations. This fact was translated into a simple linear formula, from which the scattering power that is only inversely proportional to the residual range was derived. The simplicity enabled the analytical formulation for ions stopping in water, which was designed to be equivalent with the extended Highland model and agreed with measurements within 2% or 0.02 cm in RMS displacement. The simplicity will also improve the efficiency of numerical path integrals in the presence of heterogeneity.
منابع مشابه
Generalization and specialization of multiple scattering theory for Gaussian beam model of heavy charged particles in radiotherapy
Theories on multiple scattering of charged particles are reviewed and reorganized to construct an accurate, simple, and efficient Gaussian-beam transport model for radiotherapy with protons and heavier ions. The Highland formula for scattering angle is modified to a scattering power formula to be used within the Fermi-Eyges theory for particle transport in the presence of heterogeneity. Semi-an...
متن کاملAlternative scattering power for Gaussian beam model of heavy charged particles
This study provides an accurate, efficient, and simple multiple scattering formulation for heavy charged particles such as protons and heavier ions with a new form of scattering power that is a key quantity for beam transport in matter. The Highland formula for multiple scattering angle was modified to a scattering-power formula to be used within the Fermi-Eyges theory in the presence of hetero...
متن کاملImpact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy
Background: In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness.Methods: In this study, we used Monte Carlo method-based Geant4 toolkit to s...
متن کاملMonte Carlo computation of dose deposited by carbon ions in radiation therapy
Heavy charged particles interact with matter predominantly through inelastic collisions with atomic electrons. Slower particles give more energy to the electrons in comparison with faster particles; therefore, the delivered dose increases while the particle energy decreases. The point at which the particles deposit most of their energy is called the Bragg peak. The presence of a Bragg peak make...
متن کاملThe Comparison of the shares of stopping power in a soft tissue-equivalent material
Introduction: Proton therapy is a type of radiation treatment that it uses protons to treat cancer. Because of the protons’ unique ability to distribute the radiation dose more directly to the tumor, it minimizes the damage to nearby healthy tissues. The rate of energy loss by the ion in the target is called stopping power. The total stopping power is sum nuclear and electroni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 54 5 شماره
صفحات -
تاریخ انتشار 2009